

Science Department Year 11 2020

ATAR PHYSICS UNIT 1 – Motion 1 TEST 2020

Student Name:

SOLUTIONS

Teacher:	JRM	PCW	CJO	SGA
(Please circle)				

Time allowed for this paper

Working time for paper: 40 minutes.

Instructions to candidates:

- You must include **all** working to be awarded full marks for a question.
- Answers shall be expressed to 3 significant figures unless otherwise instructed.
- Marks will be deducted for incorrect or absent units.
- No graphics calculators are permitted scientific calculators only.

Mark:	/ 37
=	%

(10 marks)

Question 1

A villain falls from a stationary helicopter at an altitude of 1250 m. After 3.00 seconds the villain attempts to shoot the helicopter. The bullet misses and reaches a vertical height of 2210 m above the ground. Air resistance can be ignored.

(a) Calculate how far the villain falls in the 3.00 seconds.

(3 marks)

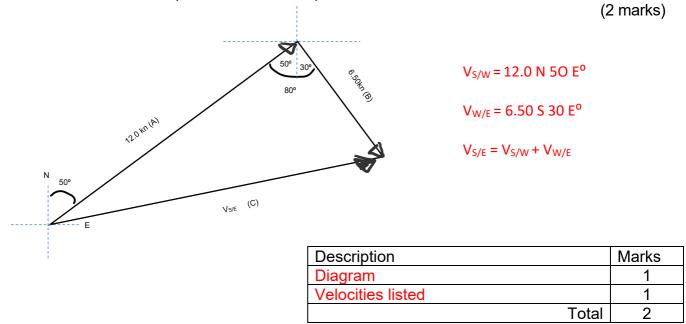
Description		Marks
$S = \frac{1}{2} at^2$		1
$= \frac{1}{2} (9.8) (3)^2$		1
= 44.1m		1
	Total	3

(b) Calculate the velocity of the villain when he attempts to shoot the helicopter.

(2 marks)

Description		Marks
v = u + at		
= - 9.8 (3)		1
= - 29.4 m s ⁻¹		
= 29.4 m s ⁻¹ Down		1
	Total	2

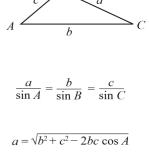
(c) Calculate the initial velocity of the bullet, relative to the villain, as it leaves the gun barrel.


(5 marks)

Description		Marks
Sinitial = -1250 + 44.1 Sfinal = -2210m	s = -2210 - (-1205.9)	1
= -1205.9	s = -1004.1m	
$v^2 = u^2 + 2as$		1
$0 = u^2 + 2(9.8)(2210-1205)$		
V = √2(9.8)(1004.1)		
= 140		
= 1.4×10^2 m/s Upwards		1
V _{v/e} = 29.4 m/s		1
$V_{b/v} = V_{b/e} - v_{e/v}$		1
= + 140 – (-29.4) =169 m/s upwa	rds	
	Total	5

Question 2

A ship is sailing north 50.0° east at 12.0 knots relative to the water and there is a current of 6.50 knots flowing **from** north 30.0° west


(a) Draw a clearly labelled vector diagram of the ships motion showing the relationship between the vectors provided and the ship's motion relative to Earth.

(b) Calculate the velocity of the ship relative to the surface of the Earth. The following expressions for triangle ABC shown may be used to assist.

	Marks
cos 80	1
30.5	1
	1
2.6. kn E 9.51° N	
Total	3
	cos 80 30.5 2.6. kn E 9.51° N Total

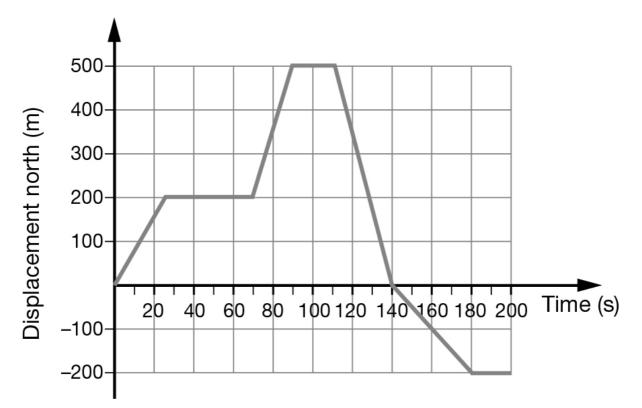
(3 marks)

(3 marks)

(c) If the captain wanted to sail due East calculate the direction he should face, relative to the water, assuming no change in speed through the water.

 Description
 Marks

 1.5 marks correct diagram
 1.5 marks correct diagram


 12cos ° = 6.5cos(30)
 1.5 marks solving (components or sine / cosine rule)

 N62.0°E
 cosine rule)

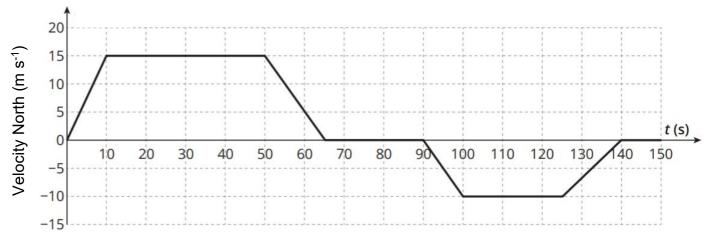
 E28.0°N
 Total
 3

Question 3

The graph below shows the displacement of Jimmy riding a mountain bike over a period of 200 s.

(a) Calculate the total distance covered by Jimmy.

(1 marks)


Description		Marks
= 500 + 500 + 200 = 1200 m		1
= 1.20 km		
	Total	1

(b) Calculate the average velocity of the rider over the 200 second period.

(2 marks)

Description		Marks
$V_{AV} = s/t$		
= <u>200ms</u>		1
200		
= 1.00ms ⁻¹ South		1
	Total	2

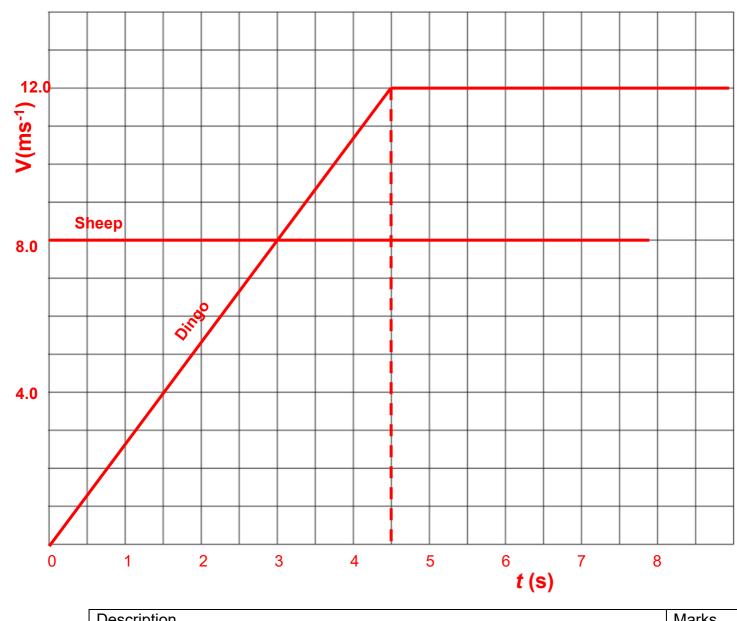
Robbie rides his mountain bike from the same point and at the same time as Jimmy. Robbie's ride is shown below:

(c) Calculate the total distance covered by Robbie for the time period shown.

(3 marks)

Description	Marks
D = Area under curve	1
$= \frac{1}{2} (15)(10) + 40 \times 15 + (\frac{1}{2}(15)(15) + (\frac{1}{2}(10)(10) + 25(10) + \frac{1}{2}15(10))$	1
= 787.5 + 375	
= 1160 m	1
Or	
Estimate 23 squares at 50msq ⁻¹ =1150m	
Total	3

(d) State which rider had the greatest speed at t = 120 s. Justify your statement with appropriate calculations.


(3 marks)

Description		Marks
Jimmy = Greatest Speed		1
V _{Robbie} = 10ms ⁻¹		1
$V_{\text{Jimmy}} = s/t$		
= 500/(140-112)		1
= 17.8 m/s		I
(accept between 16-22 m/s as long as they have found gradient)		
	Total	3

A hungry dingo is resting under a tree when a sheep runs by at a constant speed of 8.00 m s⁻¹. At the instant the sheep passes, the dingo accelerates at a constant rate for 4.50 s until it reaches its top speed of 12.0 m s⁻¹. The dingo maintains this speed until it catches the sheep.

(a) Sketch a velocity-time graph of both animals on the same graph below.

(3 marks)

Description	Marks
Graph with correct Axis	1.5
Dingo & Sheep Velocity	1.5
Total	3

(b) Using the velocity-time graph, calculate how long it takes the dingo to catch the sheep.

(5 marks)

Description (1)	Description (2)	Marks
Sheep $(4.5) = 8 \times 4.5 = 36m$ Dingo $(4.5) = \frac{1}{2}(4.5)(12) = 27m$	Area Under Dingo = Area Under Sheep A1 = A2 = A3	1
V _{d⁻s} = 12 - 8 = 4	$\frac{1}{2}(4.5)(12) + (12)(t-4.5) = 8t$	1
S _{Remaining} = 36-27 = 9m	27 + 12t – 54 = 8t	1
t = 9/4 = 2.25	4t = 27	1
t = 4.5 + 2.25 = 6.75s	T = 6.75s	1
	Tota	5

(c) Calculate the distance the dingo travels in order to catch the sheep.

(2 marks)

Description		Marks
s = vt		1
= 8(6.75)		'
= 54.0 m		1
	Total	2